Showing posts with label Michael. Show all posts
Showing posts with label Michael. Show all posts

09 November 2011

App Note 55 part 2

As always, the appendices (up to K!) are great.

Appendices A, B, and G are copied from App Note 49.

The first half of Appendix C, "Achieving meaningful efficiency measurements", is also borrowed from App Note 49, but the second half (starting with the calibration source in Figure C3) shows that considerable effort has gone into making the measurements more meaningful. Jim always devotes great effort to instrumentation, and it shows here. Again, precision RMS-to-DC conversion plays a large role. (Although Figure C6 is captioned "Typical efficiency measurement instrumentation", there's nothing typical about it.) The appendix concludes with a discussion of using calorimetric measures as a efficiency double-check (Figures C7, C8, and C9). As the man says, "Calorimetric measurements are not recommended for readers who are short on time or sanity."

Appendix D discusses more instrumentation, now focusing on photometric measurement. How much light is the CCFL producing? This question raises a key issue, as he explains in the footnote, "It is possible to build highly electrically efficient circuits that emit less light than "less efficient" designs." (See Figure J3.)

The next four appendices are short. Appendix E discusses protection circuitry (important!) for broken lamps. Appendix F discusses shutdown control, and a calibration source (Figure F2) for intensity control. Appendix G is copied from App Note 49, and Appendix H (HeNe laser power supplies) is mostly copied from App Note 49.

Appendix I is a brief (too brief!) discussion of the history and operation of the Royer topology.

Appendix J is my favorite. Titled "A lot of cut-off ears and no Van Goghs", it discusses some not-so-great ideas. On the whole, we engineers don't spend enough time talking about engineering failures, and there is often a lot to learn. Jim relates, "Backlight circuits are one of the deadliest places for theoretically interesting circuits the author has ever encountered." Figures J1, J2, and J3 attempt to increase efficiency by removing the losses in the LT1172. Unfortunately, the resulting lamp drive waveforms are undesirable. Figures J5 through J8 show suboptimal sensing schemes for measuring the output current. It is very instructive to consider why these circuits didn't work: I wish Jim had written more appendices like this one!

Appendix K is a brief discussion of the various sources of inefficiency in a backlight application, including the electrical-to-electrical step, the electrical-to-light step, and the light-to-light step (see Figure K1). Importantly, the electrical-to-electrical efficiency stays high under a variety of operating conditions (see Figure K2), which extends battery runtime.

The app note concludes with a cartoon of his son Michael sitting in front of a 556.




Related:

05 October 2011

App Note 45 part 2

Again, we have a collection of circuits here that captured Jim's imagination in some way or are improvements of circuits from previous app notes.

Figure 18 shows a quartz-stabilized oscillator, which is a different approach from the Hewlett-Packard-inspired oscillators in App Note 43. This circuit achieves 9 ppm distortion (Figure 48 in App Note 43 achieved 3 ppm distortion), but it requires a 4-kHz J-cut crystal.

Figure 19 is a single-cell-powered temperature-compensated crystal oscillator, similar to App Note 15, Figure 9. A boost converter is used to drive the varactor diode with bias voltages up to 4V.

Figure 21 appears to be an improved version of the "Zoo Circuit" V-to-F converter (App Note 23 Figure 16) with even lower power consumption (maximum 90 microamps). Figure 24 is another V-to-F converter, this one with a bipolar input (and a start-up circuit adapted from the Tek 547 trigger circuit).

Figure 27 is a 350-ps rise-time pulse generator. This circuit will be very useful in App Note 47 and other upcoming app notes (and it is much better than the 1-ns pulse generator in App Note 13 Figure D1). The pulse in Figure 28 is very clean, shown on his Tek 556 with the 1S1 sampling plugin. "I'm sorry, but 1GHz is the fastest scope in my house." (See Reference 7.)

Figure 30 is a low-dropout regulator using the LT1123 and the specially design (and now unavailable?) MJE1123 transistor. A germanium 2N4276 is explored as a replacement (but is no easier to obtain!).

Figure 36 is a power supply for a cold-cathode fluorescent lamp. Look at all the bottles! I count 48 of them. Yikes. Although Jim may not know it yet, this application is the beginning of a long-term obsession (or was it an assignment?). More praise for the Tektronix 556 and 547 on the bottom of page AN45-22.

Best quote (from Figure 36, a harbinger of future difficulties): "Do not substitute components."

More than half of the references on page AN45-23 (References 9 to 17) have to do with fetal heart monitoring (as shown in Figure 1). I feel a little sorry for Jim's wife and unborn son at this point. The App Note concludes with a great picture of Michael, perched atop a Tektronix 556.




Related: